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ABSTRACT－Space manipulators have several features uncommon to ground-based 
robots. They are highly flexible, are often mobile, and have a degree of redundancy. In 
this paper, we propose a trajectory control method for a redundant flexible space 
manipulator with slewing and deployable links on a space platform. This method 
consists of manipulator’s tip position feedback with transposed Jacobian and local 
vibration control. We newly derived Jacobian for a flexible manipulator considering 
link deformation. Also, we realized link vibration control with local torque feedback at 
each joint. Simulation results show the effectiveness of this method. We used in-plane 
dynamics developed in our group. This dynamics consists of an order N algorithm, 
based on the Lagrangian approach, to simulate the planar dynamics of an orbiting 
manipulator with arbitrary number of slewing and deployable flexible links. 
 
 
KEYWORDS: Space Robot, Flexible Arm, Space Station, Dynamics, Vibration  

Control, Deployable Links 
 

INTRODUCTION 
Several space robots have been designed as well as many are proposed for development. These include the 
Space Shuttle based Remote Manipulator System, a variety of free-flying space robots and the Space Station 
Remote Manipulator System. Also, many studies have been reported concerning dynamics and control of 
such robots1-7. In general, space robot systems consist of large scale and lightweight structures. For example, 
the Space Shuttle Manipulator system is 16 m long. They should be light extremely to reduce the launch cost 
and to be used in a no gravity environment. Therefore, it is necessary to control link vibration for 
precise trajectory control. Also, we can not operate space robots on the ground. If we do that, structures of 
a robot are broken by their weight. Moreover, it is difficult to realize a no gravity environment on the ground. 
For this reason, simulation plays very important role for research and development of space robots. 
In this paper, we consider a control law for a space platform-based large flexible manipulator system(Fig.1). 
This robot can traverse the platform with a mobile base and perform a variety of tasks, for example, handling 
of payloads. The two-unit robot has not only slewing but also deployable links. This robot will be one of 
important space robots in the near future. The system has several advantages: 
(a) reduced dynamical coupling leading to relative simple equations of motion and inverse kinematics; 
(b) reduced number of singular configuration for the same number of degrees of freedom; 
(c) case of avoidance.  
On the other hand, we have to consider flexibility of space structures. That is, link vibration can easily occur 
in this system, because a space manipulator and a platform consist of long and lightweight links in general. 
At the same time, vibration of a manipulator also influences platform attitude. Therefore, we need vibration 



control of a manipulator. Moreover, we have to consider redundancy of a manipulator when controlling 
manipulator’s tip along a trajectory. 
We propose a real-time control law for a both redundant and flexible manipulator. There have been few 
studies for real-time control of such a manipulator. This method also gives little influence to attitude of a 
space platform. The effectiveness of our method was shown by simulations using dynamics in an orbit. 
 
DYNAMICS 
In this section, we will describe dynamics of the system for simulations. The general nature of the model 
presented here allows for a serial manipulator consisting of an arbitrary number (N) of flexible units. Each 
unit consists of two links: one free to slew while the other is permitted to deploy and retrieve(Fig.1). We use 
the in-plane dynamics which was developed by Caron et al.8. This formulation was derived using the 
non-recursive and the O(N) approach. Therefore, the computational time and memory requirements are 
reduced considerably. In this section, we explain this model. Figure 2 shows coordinate systems for a 
multibody system. Robot motion is constrained in the orbital plane. F0 is the inertia reference frame fixed to 
the Earth. Fr is an orbital reference frame. Fi is a reference frame attached to the ith body. ri is a position 
vector of the elemental mass dmi with respect to Fi. fi is the displacement of the mass element, located at ri, 
due to body flexibility. Figure 3 presents description of the body-fixed frame Fi relative to the preceding 
frame Fi-1. li-1 is the length of the (i-1)th body. di is translation of the frame Fi from the tip of the (i-1)th body. ei 

is displacement of the frame Fi caused by the elastic deformation of the (i-1)th body.  
For modeling of flexibility, the elastic deformation modes were used. The platform is assumed to behave as a 
free-free Euler-Bernoulli beam. Modules of the manipulator are modeled as cantilever beams with tip 
masses. 
Generalized coordinates q consist of true anomaly of the system (θ ), inertial orientation of the frame Fi ( iψ ), 
a vector containing the time dependent generalized coordinates describing the elastic deformation of the ith 

body ( )､ rotation of the frame Fiδ i caused by the control action of the actuator located at the ith joint ( iα ), 
and di, . il
 
 

 
Fig. 1. A Schematic Diagram of the Mobile Flexible    Fig. 2. A Schematic Diagram of a Multibody 

 Deployable Manipulator, Based on a Space            System in Chain Topology with Coordi- 
Platform, Considered for Study.                     nate Frames and Vectors used to Define 

an Elemental Mass. 
 



After calculating system kinetic energy T, gravitational potential energy Vg, strain energy Ve and energy 
dissipation Rd, the equation of motion can be obtained using the Lagrangian procedure 
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where u is generalized force, is a vector of Lagrange multipliers, Q and are coefficient matrices and 
M is mass matrix. 
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TRAJECTORY CONTROL METHOD 
In this section, we propose the control approach consisting of the following two methods. The first is the 
trajectory control of the manipulator’s tip in a redundant system. Here, we propose transposed Jacobian 
method for a flexible manipulator to reduce the computational effort and adapt to the change of an outer 
environment quickly, 
 

{ )}()(T
md0md1T XXGXXGJu && −+−=                     (2) 

  
where Xd is a target trajectory, JT is the transposed Jacobian. In conventional method, J was Jacobian for 
rigid arms. But in our method, J was derived considering not only rigid arm kinematics but also link 
deformation. G0 and G1 are control gain matrices, and uT is a vector of target torques. 
The method can realize position control. But there are many configurations at one position of the 
manipulator’s tip because of redundancy, and there are no constraint conditions about the configuration. 
Therefore, vibration control is not quite effective with only this method. 

 
 

      
 

Fig. 3. Description of a Body-fixed Frame Relative    Fig. 4. Orbiting Space Platform with a Two- 
      to the Preceding Frame; (a)Position                 module Manipulator.   
      (b)Orientation. 



Next, we added vibration control method to Eq.(2) using local torque feedback method , 
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where T is force/torque at joints, G2 and G3 are control gains, and qm is a vector consisting of  and . 
This method is effective for dynamical coupling between a manipulator and a space platform, also when the 
length of manipulator’s links changes. 
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SIMULATIONS 
Effectiveness of the proposed control method was investigated. We did simulation study using Eq.(1). For 
the numerical simulation, a space platform, supporting a mobile manipulator, orbiting around the Earth was 
considered. The numerical data used in the simulation are summarized as follows: Number of bodies N is 3, 
i.e. the space platform with a two-module manipulator(Fig.4). The orbit is circular at an altitude of 400 km 
with a period of 92.5 min. The geometry of the platform is cylindrical with axial to transverse inertia ratio of 
0.005, mass=120,000 kg, length=120 m, and flexural rigidity(EIp)=5.5×108 Nm2. The manipulator revolute 
joint mass = 20 kg, moment of inertia = 10 kgm2, and stiffness(k)=1.0×104 Nm/rad. The manipulator 
links(slewing and deployable) have a cylindrical geometry with axial to transverse inertia ratio of 0.005, 
mass=200 kg, middle length=7.5 m, and flexural rigidity(EIs, EId)= 5.5×105 Nm2. The platform is initially 
oriented along the local vertical, i.e. pitch angle ψ =0, and is not controlled by actuators. Mobile base was 
fixed at the center of a platform. Only the first mode was used in modeling of flexibility. 
The acceleration vector  was integrated numerically using Gear’s method in 1.0×10q&& -8 seconds interval, 
which is well suited for stiff systems of ordinary differential equations. We used FORTRAN77 to write a 
program with a UNIX workstation. 
In the following simulations, the longitudinal elastic deformation of the bodies is neglected, as well as the 
dynamics of the mobile base. Furthermore, the manipulator is not supporting any payload. 
As the first case, a dynamical simulation was done to investigate the response of a two-unit manipulator. The 
manipulator’s shoulder joint (α ) was moved from 50 deg to 45 deg in three seconds and elbow joint (2 3α ) 
held at the initial angle of 30 deg. Figure 5 shows results. The end-effector vibrated at 0.06Hz with a 
deflection of 1.4 m at a 15 m long manipulator’s tip and 1.5 cm at an upper arm. Its natural frequency is very 
low and interrupts to the controllable frequency band of a manipulator. In this model, a tip deflection is 
affected by not only link flexibility but also joint flexibility.   
The second case examines that trajectory control along a straight line is implemented using the proposed 
control method. Figure 4 shows initial configuration and direction of the target trajectory. Here a sine-ramp 
profile is adopted for prescribed maneuvers. It assures zero velocity and acceleration at the beginning and 
end of the maneuver, thereby reducing the structural response of the system. The maneuver time history 
considered for x and y directions is as follows: 
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where  is the target trajectory,  is its desired variation, sjq sjq∆ τ  is the time, and  is the time 
required for maneuver. The manipulator’s tip moved for 5 m in 27 seconds along a dotted line in Fig.4. 
Figure 6 shows results. The maximum error becomes only 1 cm at a 15 m long manipulator’s tip. The reason 
is that the system could keep stable under the high control gain condition by the vibration control. Link 
vibration occurs and has high frequency character. But its amplitude becomes of O(mm) and is small 
compared with the case of Fig.5. The maneuver also excites, slightly, the platform vibration. But its 
deformation became smaller than manipulator’s tip deflection. 

τ∆

The third case involves that, under the same conditions with the second case, the manipulator is controlled 
using only tip position feedback, that is, employing only JT{-} term in Eq.(2) for u. Figure 7 shows results. 
Deflection was similar to that for the case of Fig.6. But the maximum tip position error became 16 cm. It is 
sixteen times bigger than the case of Fig.6. This is mainly caused by that we could not select big control 



gains G0 and G1. If we select the same control gains with the second case, the system becomes unstable. This 
means that vibration control is necessary for precise trajectory control of a flexible arm. 
These results of three cases show that accurate position control can be realized with our proposed method. 
Through these results, the platform vibration is excited by the maneuver. But even the platform tip vibration, 
which persists, has amplitude of only ±0.2 mm.     
 
STABILITY 
Next we will describe about stability of the manipulator system with the proposed control method. First, we 
will derive Hamilton’s equation of motion to use the theorem of Lyapunov. We introduce the slack variables 
for convenience9. Assume that the rank of Jacobian matrix J is n(<2N-2) and X1,…,Xn are independent 
variables. The vector of task-oriented coordinates Xm is written as 
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The vector of slack variables Xs is written as 
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which satisfies a condition, 
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where the vector fe=(fT, fs

T) and matrix Je is related with J as 
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Then the equation of motion for Xe

T=(Xm
T,Xs

T) is written as 
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where vector pm is a generalized momentum for Xm and ps is for Xs. Now we consider an asymptotic 
stabilization with respect to (Xm

T, pm
T, ps

T). Control u is set as 
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where . OXd =&

Substituting u of Eq.(11) into Eq.(10), we obtain 
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Since terms  
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can be written as 
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assuming G2 is a scalar, we can regard it as the damping force which is derived from the dissipation function  
 

ee30ee XJGJGJJX && 1
2

T1T )G()( −− +  

 
in the space of Xe. We consider the asymptotic stability of the position by means of the linearized system of 
Eqs.(9) and (12). Linearizing these equations at (Xm

T,Xs
T,pm

T,ps
T)=(Xd

T,Xsd
T,OT,OT), we obtain 
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where the kinetic energy Tm of a manipulator is written as 
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defining 
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and Xsd

T is an appropriate vector. It may be easily seen that the vector δXs can be pulled out from the 
system of Eqs.(13) and (14). Consequently, we obtain the reduced system of Eqs.(13) and (14) as follows, 
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If we differentiate the Hamiltonian H of the manipulator system 
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along the solution trajectory of the system Eq.(16), we obtain 
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Since the set ]),(.,e.i;0H);,, TTTTTT OppppX smsmm ==δ
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except , we can conclude that the system (17) is asymptotically stable. ( Xmδ

It should be noted that the vector Xs is introduced only for convenience of the above argument. The vector Xs 
converges to a certain position, with which we need not be concerned. 



Though the asymptotic stability of the redundant system is assured only for the linearized system in this 
section, global asymptotic stability can be assured for the nonlinear system of Eqs.(9) and (10), proved that 
the boundedness of the vector Xs can be assumed. It is rigorously proved by the result of literature. 
 
CONCLUSIONS 
The paper presents dynamical simulations of a redundant flexible space manipulator on a space 
platform. We used an effective mathematical model developed for studying the in-plane dynamics 
and control of a general, flexible, space-based manipulator. We proposed a trajectory control 
method for a redundant flexible space manipulator with slewing and deployable links. The 
proposed task-oriented coordinate control method seems suitable to sensor feedback control 
because the real data from each sensor can be directly used as a feedback input. The effectiveness 
of this method was shown by simulations. The future study will aim at adapting this method to a 
variety of different trajectories. 
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Fig. 5.  Time Histories of the End-effector and Arm Deflection for a Step 

                 Maneuver of the Shoulder Joint. 
 



 

 
Fig. 6.  Time Histories of a Space Robot System During Tracking of a Straight Line 

               Trajectory Using the Proposed Control Method. 
 



 

 
Fig. 7.  System Dynamics During Trajectory Tracking Using Only the Position Feedback

(Straight Line).
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